 Igashov, I., Stärk, H., Vignac, C., Schneuing, A., Satorras, V. G., Frossard, P., Welling, M., Bronstein, M., & Correia, B. (2024). Equivariant 3D-conditional diffusion model for molecular linker design. Nature Machine Intelligence, 6(4), 417–427. https://doi.org/10.1038/s42256-024-00815-9 [details]
Igashov, I., Stärk, H., Vignac, C., Schneuing, A., Satorras, V. G., Frossard, P., Welling, M., Bronstein, M., & Correia, B. (2024). Equivariant 3D-conditional diffusion model for molecular linker design. Nature Machine Intelligence, 6(4), 417–427. https://doi.org/10.1038/s42256-024-00815-9 [details] Romijnders, R., Louizos, C., Asano, Y. M., & Welling, M. (2024). Protect Your Score: Contact-tracing With Differential Privacy Guarantees. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence: AAAI-2024 (Vol. 13, pp. 14829-14837). AAAI Press. https://doi.org/10.1609/aaai.v38i13.29402 [details]
Romijnders, R., Louizos, C., Asano, Y. M., & Welling, M. (2024). Protect Your Score: Contact-tracing With Differential Privacy Guarantees. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence: AAAI-2024 (Vol. 13, pp. 14829-14837). AAAI Press. https://doi.org/10.1609/aaai.v38i13.29402 [details] Schneuing, A., Harris, C., Du, Y., Didi, K., Jamasb, A., Igashov, I., Du, W., Gomes, C., Blundell, T. L., Lio, P., Welling, M., Bronstein, M., & Correia, B. (2024). Structure-based drug design with equivariant diffusion models. Nature Computational Science, 4(12), 899-909. https://doi.org/10.1038/s43588-024-00737-x [details]
Schneuing, A., Harris, C., Du, Y., Didi, K., Jamasb, A., Igashov, I., Du, W., Gomes, C., Blundell, T. L., Lio, P., Welling, M., Bronstein, M., & Correia, B. (2024). Structure-based drug design with equivariant diffusion models. Nature Computational Science, 4(12), 899-909. https://doi.org/10.1038/s43588-024-00737-x [details] Bakker, T., van Hoof, H., & Welling, M. (2023). Learning Objective-Specific Active Learning Strategies with Attentive Neural Processes. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases : Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. I, pp. 3-19). (Lecture Notes in Computer Science; Vol. 14169), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.48550/arXiv.2309.05477, https://doi.org/10.1007/978-3-031-43412-9_1 [details]
Bakker, T., van Hoof, H., & Welling, M. (2023). Learning Objective-Specific Active Learning Strategies with Attentive Neural Processes. In D. Koutra, C. Plant, M. Gomez Rodriguez, E. Baralis, & F. Bonchi (Eds.), Machine Learning and Knowledge Discovery in Databases : Research Track : European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023 : proceedings (Vol. I, pp. 3-19). (Lecture Notes in Computer Science; Vol. 14169), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.48550/arXiv.2309.05477, https://doi.org/10.1007/978-3-031-43412-9_1 [details] Bondesan, R., Gavves, E., Oh, C., & Welling, M. (2023). Batch Bayesian Optimization on Permutations using Acquisition Weighted Kernels. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 10, pp. 6843-6858). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper_files/paper/2022/hash/2d779258dd899505b56f237de66ae470-Abstract-Conference.html [details]
Bondesan, R., Gavves, E., Oh, C., & Welling, M. (2023). Batch Bayesian Optimization on Permutations using Acquisition Weighted Kernels. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), 36th Conference on Neural Information Processing Systems (NeurIPS 2022): New Orleans, Louisiana, USA, 28 November-9 December 2022 (Vol. 10, pp. 6843-6858). (Advances in Neural Information Processing Systems; Vol. 35). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper_files/paper/2022/hash/2d779258dd899505b56f237de66ae470-Abstract-Conference.html [details] Romijnders, R., Asano, Y. M., Louizos, C., & Welling, M. (2023). No time to waste: practical statistical contact tracing with few low-bit messages. Proceedings of Machine Learning Research, 206, 7943-7960. https://proceedings.mlr.press/v206/romijnders23a.html [details]
Romijnders, R., Asano, Y. M., Louizos, C., & Welling, M. (2023). No time to waste: practical statistical contact tracing with few low-bit messages. Proceedings of Machine Learning Research, 206, 7943-7960. https://proceedings.mlr.press/v206/romijnders23a.html [details] Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., & Welling, M. (2022). Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 15, pp. 12454-12465). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html [details]
Forre, P., Hoogeboom, E., Jaini, P., Nielsen, D., & Welling, M. (2022). Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 15, pp. 12454-12465). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2021/hash/67d96d458abdef21792e6d8e590244e7-Abstract.html [details] Keller, T. A., & Welling, M. (2022). Topographic VAEs learn Equivariant Capsules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 34, pp. 28585-28597). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2109.01394 [details]
Keller, T. A., & Welling, M. (2022). Topographic VAEs learn Equivariant Capsules. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 34, pp. 28585-28597). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://doi.org/10.48550/arXiv.2109.01394 [details] Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2022). Deep Policy Dynamic Programming for Vehicle Routing Problems. In P. Schaus (Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022 : proceedings (pp. 190–213). (Lecture Notes in Computer Science; Vol. 13292). Springer. https://doi.org/10.48550/arXiv.2102.11756, https://doi.org/10.1007/978-3-031-08011-1_14 [details]
Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2022). Deep Policy Dynamic Programming for Vehicle Routing Problems. In P. Schaus (Ed.), Integration of Constraint Programming, Artificial Intelligence, and Operations Research: 19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022 : proceedings (pp. 190–213). (Lecture Notes in Computer Science; Vol. 13292). Springer. https://doi.org/10.48550/arXiv.2102.11756, https://doi.org/10.1007/978-3-031-08011-1_14 [details] Löwe, S., Lippe, P., Rudolph, M., & Welling, M. (2022). Complex-Valued Autoencoders for Object Discovery. Transactions on Machine Learning Research, 2022, Article 428. https://openreview.net/forum?id=1PfcmFTXoa [details]
Löwe, S., Lippe, P., Rudolph, M., & Welling, M. (2022). Complex-Valued Autoencoders for Object Discovery. Transactions on Machine Learning Research, 2022, Article 428. https://openreview.net/forum?id=1PfcmFTXoa [details] Bakker, T., Van Hoof, H., & Welling, M. (2021). Experimental design for MRI by greedy policy search. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 23, pp. 18954-18966). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/daed210307f1dbc6f1dd9551408d999f-Abstract.html [details]
Bakker, T., Van Hoof, H., & Welling, M. (2021). Experimental design for MRI by greedy policy search. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 23, pp. 18954-18966). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/daed210307f1dbc6f1dd9551408d999f-Abstract.html [details] COVID-PREDICT-werkgroep (2021). Klinisch beloop van covid-19 in Nederland: Een overzicht van 2607 ziekenhuispatiënten uit de eerste golf. Nederlands Tijdschrift voor Geneeskunde, 165(3), Article D5085. https://www.ntvg.nl/artikelen/klinisch-beloop-van-covid-19-nederland [details]
COVID-PREDICT-werkgroep (2021). Klinisch beloop van covid-19 in Nederland: Een overzicht van 2607 ziekenhuispatiënten uit de eerste golf. Nederlands Tijdschrift voor Geneeskunde, 165(3), Article D5085. https://www.ntvg.nl/artikelen/klinisch-beloop-van-covid-19-nederland [details] De Haan, P., Cohen, T. S., & Welling, M. (2021). Natural Graph Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 5, pp. 3636-3646). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html [details]
De Haan, P., Cohen, T. S., & Welling, M. (2021). Natural Graph Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 5, pp. 3636-3646). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2517756c5a9be6ac007fe9bb7fb92611-Abstract.html [details] Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2021). SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 3, pp. 1970-1981). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/15231a7ce4ba789d13b722cc5c955834-Abstract.html [details]
Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2021). SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 3, pp. 1970-1981). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/15231a7ce4ba789d13b722cc5c955834-Abstract.html [details] Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2021). The Convolution Exponential and Generalized Sylvester Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 22, pp. 18249-18248). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/d3f06eef2ffac7faadbe3055a70682ac-Abstract.html [details]
Hoogeboom, E., Garcia Satorras, V., Tomczak, J., & Welling, M. (2021). The Convolution Exponential and Generalized Sylvester Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 22, pp. 18249-18248). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/d3f06eef2ffac7faadbe3055a70682ac-Abstract.html [details] Hu, S., Fridgeirsson, E. A., van Wingen, G., & Welling, M. (2021). Transformer-Based Deep Survival Analysis. Proceedings of Machine Learning Research, 146, 132-148. https://proceedings.mlr.press/v146/hu21a.html [details]
Hu, S., Fridgeirsson, E. A., van Wingen, G., & Welling, M. (2021). Transformer-Based Deep Survival Analysis. Proceedings of Machine Learning Research, 146, 132-148. https://proceedings.mlr.press/v146/hu21a.html [details] Hu, S., Pezzotti, N., & Welling, M. (2021). Learning to Predict Error for MRI Reconstruction. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021 : proceedings (Vol. III, pp. 604-613). (Lecture Notes in Computer Science; Vol. 12903). Springer. https://doi.org/10.1007/978-3-030-87199-4_57 [details]
Hu, S., Pezzotti, N., & Welling, M. (2021). Learning to Predict Error for MRI Reconstruction. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021 : proceedings (Vol. III, pp. 604-613). (Lecture Notes in Computer Science; Vol. 12903). Springer. https://doi.org/10.1007/978-3-030-87199-4_57 [details] Keller, T. A., & Welling, M. (2021). Predictive Coding with Topographic Variational Autoencoders. In 2021 IEEE/CVF International Conference on Computer Vision Workshops: proceedings : ICCVW 2021 : 11-17 October 2021, virtual event (pp. 1086-1091). IEEE Computer Society. https://doi.org/10.1109/ICCVW54120.2021.00127 [details]
Keller, T. A., & Welling, M. (2021). Predictive Coding with Topographic Variational Autoencoders. In 2021 IEEE/CVF International Conference on Computer Vision Workshops: proceedings : ICCVW 2021 : 11-17 October 2021, virtual event (pp. 1086-1091). IEEE Computer Society. https://doi.org/10.1109/ICCVW54120.2021.00127 [details] Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2021). SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 16, pp. 12685-12696). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html [details]
Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2021). SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 16, pp. 12685-12696). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/9578a63fbe545bd82cc5bbe749636af1-Abstract.html [details] Ottenhoff, M. C., Ramos, L. A., Potters, W., Hu, S., Thomas, R., Elbers, P., Welling, M., Simsek, S., Wiersinga, W. J., van Wingen, G. A., & The Dutch COVID-PREDICT research group (2021). Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort. BMJ Open, 11(7), Article e047347. https://doi.org/10.1136/bmjopen-2020-047347 [details]
Ottenhoff, M. C., Ramos, L. A., Potters, W., Hu, S., Thomas, R., Elbers, P., Welling, M., Simsek, S., Wiersinga, W. J., van Wingen, G. A., & The Dutch COVID-PREDICT research group (2021). Predicting mortality of individual patients with COVID-19: a multicentre Dutch cohort. BMJ Open, 11(7), Article e047347. https://doi.org/10.1136/bmjopen-2020-047347 [details] Van Der Pol, E., Worrall, D., Van Hoof, H., Oliehoek, F., & Welling, M. (2021). MDP homomorphic networks: Group symmetries in reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 6, pp. 4199-4210). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2be5f9c2e3620eb73c2972d7552b6cb5-Abstract.html [details]
Van Der Pol, E., Worrall, D., Van Hoof, H., Oliehoek, F., & Welling, M. (2021). MDP homomorphic networks: Group symmetries in reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th Concerence on Neural Information Processing Systems (NeurIPS 2020): online, 6-12 December 2020 (Vol. 6, pp. 4199-4210). (Advances in Neural Information Processing Systems; Vol. 33). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2020/hash/2be5f9c2e3620eb73c2972d7552b6cb5-Abstract.html [details] Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag, L., van Harmelen, F., ... Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18-28. https://doi.org/10.1109/MC.2020.2996587 [details]
Akata, Z., Balliet, D., de Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens, A., Grossi, D., Hindriks, K., Hoos, H., Hung, H., Jonker, C., Monz, C., Neerincx, M., Oliehoek, F., Prakken, H., Schlobach, S., van der Gaag, L., van Harmelen, F., ... Welling, M. (2020). A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence. Computer, 53(8), 18-28. https://doi.org/10.1109/MC.2020.2996587 [details] Hoogeboom, E., Peters, J. W. T., van den Berg, R., & Welling, M. (2020). Integer Discrete Flows and Lossless Compression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 16, pp. 12114-12124). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html [details]
Hoogeboom, E., Peters, J. W. T., van den Berg, R., & Welling, M. (2020). Integer Discrete Flows and Lossless Compression. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 16, pp. 12114-12124). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/9e9a30b74c49d07d8150c8c83b1ccf07-Abstract.html [details] Kool, W., van Hoof, H., & Welling, M. (2020). Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement. Journal of Machine Learning Research, 21, Article 47. https://jmlr.csail.mit.edu/papers/v21/19-985.html [details]
Kool, W., van Hoof, H., & Welling, M. (2020). Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement. Journal of Machine Learning Research, 21, Article 47. https://jmlr.csail.mit.edu/papers/v21/19-985.html [details] Oh, C., Tomczak, J. M., Gavves, E., & Welling, M. (2020). Combinatorial Bayesian Optimization using the Graph Cartesian Product. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 4, pp. 2891-2901). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/2cb6b10338a7fc4117a80da24b582060-Abstract.html [details]
Oh, C., Tomczak, J. M., Gavves, E., & Welling, M. (2020). Combinatorial Bayesian Optimization using the Graph Cartesian Product. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 4, pp. 2891-2901). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/2cb6b10338a7fc4117a80da24b582060-Abstract.html [details] Shang, W., van der Wal, D., van Hoof, H., & Welling, M. (2020). Stochastic Activation Actor Critic Methods. In U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, & C. Robardet (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019 : proceedings (Vol. III, pp. 103-117). (Lecture Notes in Computer Science; Vol. 11908), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-46133-1_7 [details]
Shang, W., van der Wal, D., van Hoof, H., & Welling, M. (2020). Stochastic Activation Actor Critic Methods. In U. Brefeld, E. Fromont, A. Hotho, A. Knobbe, M. Maathuis, & C. Robardet (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019 : proceedings (Vol. III, pp. 103-117). (Lecture Notes in Computer Science; Vol. 11908), (Lecture Notes in Artificial Intelligence). Springer. https://doi.org/10.1007/978-3-030-46133-1_7 [details] Worrall, D., & Welling, M. (2020). Deep Scale-spaces: Equivariance Over Scale. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 10, pp. 7334-7346). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/f04cd7399b2b0128970efb6d20b5c551-Abstract.html [details]
Worrall, D., & Welling, M. (2020). Deep Scale-spaces: Equivariance Over Scale. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019 (Vol. 10, pp. 7334-7346). (Advances in Neural Information Processing Systems; Vol. 32). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2019/hash/f04cd7399b2b0128970efb6d20b5c551-Abstract.html [details] Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2019). The Deep Weight Prior. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://arxiv.org/abs/1810.06943 [details]
Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., & Welling, M. (2019). The Deep Weight Prior. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://arxiv.org/abs/1810.06943 [details] Cohen, T. S., Weiler, M., Kicanaoglu, B., & Welling, M. (2019). Gauge Equivariant Convolutional Networks and the Icosahedral CNN. Proceedings of Machine Learning Research, 97, 1321-1330. http://proceedings.mlr.press/v97/cohen19d.html [details]
Cohen, T. S., Weiler, M., Kicanaoglu, B., & Welling, M. (2019). Gauge Equivariant Convolutional Networks and the Icosahedral CNN. Proceedings of Machine Learning Research, 97, 1321-1330. http://proceedings.mlr.press/v97/cohen19d.html [details] Hoogeboom, E., van den Berg, R., & Welling, M. (2019). Emerging Convolutions for Generative Normalizing Flows. Proceedings of Machine Learning Research, 97, 2771-2780. http://proceedings.mlr.press/v97/hoogeboom19a.html [details]
Hoogeboom, E., van den Berg, R., & Welling, M. (2019). Emerging Convolutions for Generative Normalizing Flows. Proceedings of Machine Learning Research, 97, 2771-2780. http://proceedings.mlr.press/v97/hoogeboom19a.html [details] Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems! In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://arxiv.org/abs/1803.08475 [details]
Kool, W., van Hoof, H., & Welling, M. (2019). Attention, learn to solve routing problems! In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://arxiv.org/abs/1803.08475 [details] Kool, W., van Hoof, H., & Welling, M. (2019). Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. Proceedings of Machine Learning Research, 97, 3499-3508. http://proceedings.mlr.press/v97/kool19a.html [details]
Kool, W., van Hoof, H., & Welling, M. (2019). Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. Proceedings of Machine Learning Research, 97, 3499-3508. http://proceedings.mlr.press/v97/kool19a.html [details] Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2019). Relaxed Quantization for Discretized Neural Networks. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://openreview.net/forum?id=HkxjYoCqKX [details]
Louizos, C., Reisser, M., Blankevoort, T., Gavves, E., & Welling, M. (2019). Relaxed Quantization for Discretized Neural Networks. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019   OpenReview. https://openreview.net/forum?id=HkxjYoCqKX [details] O'Connor, P., Gavves, E., & Welling, M. (2019). Initialized Equilibrium Propagation for Backprop-Free Training. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://openreview.net/forum?id=B1GMDsR5tm [details]
O'Connor, P., Gavves, E., & Welling, M. (2019). Initialized Equilibrium Propagation for Backprop-Free Training. In ICLR 2019: International Conference on Learning Representations : New Orleans, Louisiana, United States, May 6-May 9, 2019 OpenReview. https://openreview.net/forum?id=B1GMDsR5tm [details] O'Connor, P., Gavves, E., & Welling, M. (2019). Training a Spiking Neural Network with Equilibrium Propagation. Proceedings of Machine Learning Research, 89, 1516-1523. http://proceedings.mlr.press/v89/o-connor19a.html [details]
O'Connor, P., Gavves, E., & Welling, M. (2019). Training a Spiking Neural Network with Equilibrium Propagation. Proceedings of Machine Learning Research, 89, 1516-1523. http://proceedings.mlr.press/v89/o-connor19a.html [details] Patrini, G., van den Berg, R., Forré, P., Carioni, M., Bhargav, S., Welling, M., Genewein, T., & Nielsen, F. (2019). Sinkhorn AutoEncoders. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 253 AUAI Press. https://arxiv.org/abs/1810.01118 [details]
Patrini, G., van den Berg, R., Forré, P., Carioni, M., Bhargav, S., Welling, M., Genewein, T., & Nielsen, F. (2019). Sinkhorn AutoEncoders. In A. Globerson, & R. Silva (Eds.), Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence: UAI 2019, Tel Aviv, Israel, July 22-25, 2019 Article 253 AUAI Press. https://arxiv.org/abs/1810.01118 [details] Weiler, M., Boomsma, W., Geiger, M., Welling, M., & Cohen, T. (2019). 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018 : Montreal, Canada, 3-8 December 2018  (Vol. 15, pp. 10381-10392). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-Abstract.html [details]
Weiler, M., Boomsma, W., Geiger, M., Welling, M., & Cohen, T. (2019). 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), 32nd Conference on Neural Information Processing Systems 2018 : Montreal, Canada, 3-8 December 2018  (Vol. 15, pp. 10381-10392). (Advances in Neural Information Processing Systems; Vol. 31). Neural Information Processing Systems Foundation. https://papers.nips.cc/paper/2018/hash/488e4104520c6aab692863cc1dba45af-Abstract.html [details] Ilse, M., Tomczak, J. M., & Welling, M. (2018). Attention-based Deep Multiple Instance Learning. Proceedings of Machine Learning Research, 80, 2127-2136. http://proceedings.mlr.press/v80/ilse18a.html [details]
Ilse, M., Tomczak, J. M., & Welling, M. (2018). Attention-based Deep Multiple Instance Learning. Proceedings of Machine Learning Research, 80, 2127-2136. http://proceedings.mlr.press/v80/ilse18a.html [details] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural Relational Inference for Interacting Systems. Proceedings of Machine Learning Research, 80, 2688-2697. http://proceedings.mlr.press/v80/kipf18a.html [details]
Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., & Zemel, R. (2018). Neural Relational Inference for Interacting Systems. Proceedings of Machine Learning Research, 80, 2688-2697. http://proceedings.mlr.press/v80/kipf18a.html [details] Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., & Welling, M. (2018). Causal Effect Inference with Deep Latent-Variable Models. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017  (Vol. 10, pp. 6447-6457). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/2017/file/94b5bde6de888ddf9cde6748ad2523d1-Paper.pdf [details]
Louizos, C., Shalit, U., Mooij, J., Sontag, D., Zemel, R., & Welling, M. (2018). Causal Effect Inference with Deep Latent-Variable Models. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017  (Vol. 10, pp. 6447-6457). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/2017/file/94b5bde6de888ddf9cde6748ad2523d1-Paper.pdf [details] Louizos, C., Ullrich, K., & Welling, M. (2018). Bayesian Compression for Deep Learning. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017  (Vol. 5, pp. 3289-3299). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning [details]
Louizos, C., Ullrich, K., & Welling, M. (2018). Bayesian Compression for Deep Learning. In U. von Luxburg, I. Guyon, S. Bengio, H. Wallach, R. Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.), 31st Conference on Advances in Neural Information Processing Systems (NIPS 2017): Long Beach, California, USA, 4-9 December 2017  (Vol. 5, pp. 3289-3299). (Advances in Neural Information Processing Systems; Vol. 30). Neural Information Processing Systems. https://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning [details] Oh, C., Gavves, E., & Welling, M. (2018). BOCK: Bayesian Optimization with Cylindrical Kernels. Proceedings of Machine Learning Research, 80, 3868-3877. http://proceedings.mlr.press/v80/oh18a.html [details]
Oh, C., Gavves, E., & Welling, M. (2018). BOCK: Bayesian Optimization with Cylindrical Kernels. Proceedings of Machine Learning Research, 80, 3868-3877. http://proceedings.mlr.press/v80/oh18a.html [details] Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, & M. Alam (Eds.), The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018 : proceedings (pp. 593-607). (Lecture Notes in Computer Science; Vol. 10843). Springer. https://doi.org/10.1007/978-3-319-93417-4_38 [details]
Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018). Modeling Relational Data with Graph Convolutional Networks. In A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, & M. Alam (Eds.), The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018 : proceedings (pp. 593-607). (Lecture Notes in Computer Science; Vol. 10843). Springer. https://doi.org/10.1007/978-3-319-93417-4_38 [details] Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior. Proceedings of Machine Learning Research, 84, 1214-1223. https://arxiv.org/abs/1705.07120 [details]
Tomczak, J. M., & Welling, M. (2018). VAE with a VampPrior. Proceedings of Machine Learning Research, 84, 1214-1223. https://arxiv.org/abs/1705.07120 [details] van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 393-402). AUAI Press. http://auai.org/uai2018/proceedings/papers/156.pdf [details]
van den Berg, R., Hasenclever, L., Tomczak, J. M., & Welling, M. (2018). Sylvester Normalizing Flows for Variational Inference. In A. Globerson, & R. Silva (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Fourth Concerence (2018) : August 6-10, 2018, Monterey, California, USA (pp. 393-402). AUAI Press. http://auai.org/uai2018/proceedings/papers/156.pdf [details] Adel, T., Cohen, T., Caan, M., Welling, M., AGEhIV Study Group, & Alzheimer's Disease Neuroimaging Initiative (2017). 3D scattering transforms for disease classification in neuroimaging. NeuroImage: Clinical, 14, 506-517. https://doi.org/10.1016/j.nicl.2017.02.004 [details]
Adel, T., Cohen, T., Caan, M., Welling, M., AGEhIV Study Group, & Alzheimer's Disease Neuroimaging Initiative (2017). 3D scattering transforms for disease classification in neuroimaging. NeuroImage: Clinical, 14, 506-517. https://doi.org/10.1016/j.nicl.2017.02.004 [details] Eck, A., Zintgraf, L. M., de Groot, E. F. J., de Meij, T. G. J., Cohen, T. S., Savelkoul, P. H. M., Welling, M., & Budding, A. E. (2017). Interpretation of microbiota-based diagnostics by explaining individual classifier decisions. BMC Bioinformatics, 18, Article 441. https://doi.org/10.1186/s12859-017-1843-1 [details]
Eck, A., Zintgraf, L. M., de Groot, E. F. J., de Meij, T. G. J., Cohen, T. S., Savelkoul, P. H. M., Welling, M., & Budding, A. E. (2017). Interpretation of microbiota-based diagnostics by explaining individual classifier decisions. BMC Bioinformatics, 18, Article 441. https://doi.org/10.1186/s12859-017-1843-1 [details] Eck, A., de Groot, E. F. J., de Meij, T. G. J., Welling, M., Savelkoul, P. H. M., & Budding, A. E. (2017). Robust Microbiota-Based Diagnostics for Inflammatory Bowel Disease. Journal of Clinical Microbiology, 55(6), 1720-1732. https://doi.org/10.1128/JCM.00162-17 [details]
Eck, A., de Groot, E. F. J., de Meij, T. G. J., Welling, M., Savelkoul, P. H. M., & Budding, A. E. (2017). Robust Microbiota-Based Diagnostics for Inflammatory Bowel Disease. Journal of Clinical Microbiology, 55(6), 1720-1732. https://doi.org/10.1128/JCM.00162-17 [details] Kingma, D., Salimans, T., Josefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2017). Improving Variational Autoencoders with Inverse Autoregressive Flow. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4743-4751). (Advances in Neural Information Processing Systems; Vol. 29). Curran Associates. https://arxiv.org/abs/1606.04934 [details]
Kingma, D., Salimans, T., Josefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2017). Improving Variational Autoencoders with Inverse Autoregressive Flow. In D. D. Lee, U. von Luxburg, R. Garnett, M. Sugiyama, & I. Guyon (Eds.), 30th Annual Conference on Neural Information Processing Systems 2016: Barcelona, Spain, 5-10 December 2016 (Vol. 7, pp. 4743-4751). (Advances in Neural Information Processing Systems; Vol. 29). Curran Associates. https://arxiv.org/abs/1606.04934 [details] Louizos, C., & Welling, M. (2017). Multiplicative Normalizing Flows for Variational Bayesian Neural Networks. Proceedings of Machine Learning Research, 70, 2218-2227. http://proceedings.mlr.press/v70/louizos17a.html [details]
Louizos, C., & Welling, M. (2017). Multiplicative Normalizing Flows for Variational Bayesian Neural Networks. Proceedings of Machine Learning Research, 70, 2218-2227. http://proceedings.mlr.press/v70/louizos17a.html [details] Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2017). DP-EM: Differentially Private Expectation Maximization. Proceedings of Machine Learning Research, 54, 896-904. http://proceedings.mlr.press/v54/park17c.html [details]
Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2017). DP-EM: Differentially Private Expectation Maximization. Proceedings of Machine Learning Research, 54, 896-904. http://proceedings.mlr.press/v54/park17c.html [details] Chen, Y., Bornn, L., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2016). Herded Gibbs Sampling. Journal of Machine Learning Research, 17, Article 10. http://www.jmlr.org/papers/v17/chen16a.html [details]
Chen, Y., Bornn, L., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2016). Herded Gibbs Sampling. Journal of Machine Learning Research, 17, Article 10. http://www.jmlr.org/papers/v17/chen16a.html [details] Cohen, T. S., & Welling, M. (2016). Group Equivariant Convolutional Networks. JMLR Workshop and Conference Proceedings, 48, 2990-2999. http://proceedings.mlr.press/v48/cohenc16.html [details]
Cohen, T. S., & Welling, M. (2016). Group Equivariant Convolutional Networks. JMLR Workshop and Conference Proceedings, 48, 2990-2999. http://proceedings.mlr.press/v48/cohenc16.html [details] Foulds, J., Geumlek, J., Welling, M., & Chaudhuri, K. R. (2016). On the Theory and Practice of Privacy Preserving Data Analysis. In A. Ihler, & D. Janzing (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Second Conference (2016) : June 25-29, 2016, Jersey City, New Jersey, USA (pp. 192-201). Article 45 AUAI Press. http://www.auai.org/uai2016/proceedings/papers/45.pdf [details]
Foulds, J., Geumlek, J., Welling, M., & Chaudhuri, K. R. (2016). On the Theory and Practice of Privacy Preserving Data Analysis. In A. Ihler, & D. Janzing (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Thirty-Second Conference (2016) : June 25-29, 2016, Jersey City, New Jersey, USA (pp. 192-201). Article 45 AUAI Press. http://www.auai.org/uai2016/proceedings/papers/45.pdf [details] Korattikara, A., Chen, Y., & Welling, M. (2016). Sequential Tests for Large Scale Learning. Neural Computation, 28(1), 45-70. https://doi.org/10.1162/NECO_a_00226 [details]
Korattikara, A., Chen, Y., & Welling, M. (2016). Sequential Tests for Large Scale Learning. Neural Computation, 28(1), 45-70. https://doi.org/10.1162/NECO_a_00226 [details] Li, W., Ahn, S., & Welling, M. (2016). Scalable MCMC for Mixed Membership Stochastic Blockmodels. JMLR Workshop and Conference Proceedings, 51, 723-731. http://jmlr.org/proceedings/papers/v51/li16d.html [details]
Li, W., Ahn, S., & Welling, M. (2016). Scalable MCMC for Mixed Membership Stochastic Blockmodels. JMLR Workshop and Conference Proceedings, 51, 723-731. http://jmlr.org/proceedings/papers/v51/li16d.html [details] Louizos, C., & Welling, M. (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors. JMLR Workshop and Conference Proceedings, 48, 1708-1716. http://proceedings.mlr.press/v48/louizos16.html [details]
Louizos, C., & Welling, M. (2016). Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors. JMLR Workshop and Conference Proceedings, 48, 1708-1716. http://proceedings.mlr.press/v48/louizos16.html [details] Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2016). The Variational Fair Autoencoder. In ICLR 2016: International Conference on Learning Representations: May 2-4, 2016, San Juan, Puerto Rico. Accepted papers (Conference Track) Computational and Biological Learning Society. https://arxiv.org/abs/1511.00830 [details]
Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2016). The Variational Fair Autoencoder. In ICLR 2016: International Conference on Learning Representations: May 2-4, 2016, San Juan, Puerto Rico. Accepted papers (Conference Track) Computational and Biological Learning Society. https://arxiv.org/abs/1511.00830 [details] Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2016). Private Topic Modeling. In Private Multi-Party Machine Learning: NIPS 2016 workshop : Barcelona, December 9 : PMPML'16 NIPS. https://arxiv.org/abs/1609.04120 [details]
Park, M., Foulds, J., Chaudhuri, K., & Welling, M. (2016). Private Topic Modeling. In Private Multi-Party Machine Learning: NIPS 2016 workshop : Barcelona, December 9 : PMPML'16 NIPS. https://arxiv.org/abs/1609.04120 [details] Welling, M. (2016). Marrying Graphical Models with Deep Learning. ERCIM News, 107, 20-21. https://ercim-news.ercim.eu/en107 [details]
Welling, M. (2016). Marrying Graphical Models with Deep Learning. ERCIM News, 107, 20-21. https://ercim-news.ercim.eu/en107 [details] Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC. In KDD'15: proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: August 10-13, 2015, Sydney, Australia (pp. 9-18). Association for Computing Machinery. https://doi.org/10.1145/2783258.2783373 [details]
Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC. In KDD'15: proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: August 10-13, 2015, Sydney, Australia (pp. 9-18). Association for Computing Machinery. https://doi.org/10.1145/2783258.2783373 [details] Chiang, M., Cinquin, A., Paz, A., Meeds, E., Price, C. A., Welling, M., & Cinquin, O. (2015). Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biology, 13, Article 51. https://doi.org/10.1186/s12915-015-0148-y [details]
Chiang, M., Cinquin, A., Paz, A., Meeds, E., Price, C. A., Welling, M., & Cinquin, O. (2015). Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biology, 13, Article 51. https://doi.org/10.1186/s12915-015-0148-y [details] Cohen, T. S., & Welling, M. (2015). Harmonic Exponential Families on Manifolds. JMLR Workshop and Conference Proceedings, 37, 1757-1765. http://jmlr.org/proceedings/papers/v37/cohenb15.html [details]
Cohen, T. S., & Welling, M. (2015). Harmonic Exponential Families on Manifolds. JMLR Workshop and Conference Proceedings, 37, 1757-1765. http://jmlr.org/proceedings/papers/v37/cohenb15.html [details] Cohen, T. S., & Welling, M. (2015). Transformation Properties of Learned Visual Representations. In ICLR 2015: accepted papers - Main Conference - Poster Presentations ArXiv. http://arxiv.org/abs/1412.7659 [details]
Cohen, T. S., & Welling, M. (2015). Transformation Properties of Learned Visual Representations. In ICLR 2015: accepted papers - Main Conference - Poster Presentations ArXiv. http://arxiv.org/abs/1412.7659 [details] Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational Dropout and the Local Reparameterization Trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2575-2583). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick [details]
Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational Dropout and the Local Reparameterization Trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2575-2583). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick [details] Korattikara, A., Rathod, V., Murphy, K., & Welling, M. (2015). Bayesian Dark Knowledge. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 4, pp. 3438-3446). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5965-bayesian-dark-knowledge [details]
Korattikara, A., Rathod, V., Murphy, K., & Welling, M. (2015). Bayesian Dark Knowledge. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 4, pp. 3438-3446). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5965-bayesian-dark-knowledge [details] Meeds, E., & Welling, M. (2015). Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2080-2088). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5881-optimization-monte-carlo-efficient-and-embarrassingly-parallel-likelihood-free-inference [details]
Meeds, E., & Welling, M. (2015). Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), 29th Annual Conference on Neural Information Processing Systems 2015: Montreal, Canada, 7-12 December 2015 (Vol. 3, pp. 2080-2088). (Advances in Neural Information Processing Systems; Vol. 28). Curran Associates. http://papers.nips.cc/paper/5881-optimization-monte-carlo-efficient-and-embarrassingly-parallel-likelihood-free-inference [details] Meeds, E., Chiang, M., Lee, M., Cinquin, O., Lowengrub, J., & Welling, M. (2015). POPE: Post Optimization Posterior Evaluation of Likelihood Free Models. BMC Bioinformatics, 16, Article 264. https://doi.org/10.1186/s12859-015-0658-1 [details]
Meeds, E., Chiang, M., Lee, M., Cinquin, O., Lowengrub, J., & Welling, M. (2015). POPE: Post Optimization Posterior Evaluation of Likelihood Free Models. BMC Bioinformatics, 16, Article 264. https://doi.org/10.1186/s12859-015-0658-1 [details] Meeds, E., Hendriks, R., Al Faraby, S., Bruntink, M., & Welling, M. (2015). MLitB: Machine Learning in the Browser. PeerJ Computer Science, 1, Article e11. https://doi.org/10.7717/peerj-cs.11 [details]
Meeds, E., Hendriks, R., Al Faraby, S., Bruntink, M., & Welling, M. (2015). MLitB: Machine Learning in the Browser. PeerJ Computer Science, 1, Article e11. https://doi.org/10.7717/peerj-cs.11 [details] Salimans, T., Kingma, D. P., & Welling, M. (2015). Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. JMLR Workshop and Conference Proceedings, 37, 1218-1226. http://jmlr.org/proceedings/papers/v37/salimans15.html [details]
Salimans, T., Kingma, D. P., & Welling, M. (2015). Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. JMLR Workshop and Conference Proceedings, 37, 1218-1226. http://jmlr.org/proceedings/papers/v37/salimans15.html [details] Ahn, S., Shahbaba, B., & Welling, M. (2014). Distributed Stochastic Gradient MCMC. JMLR Workshop and Conference Proceedings, 32, 1044-1052. http://jmlr.org/proceedings/papers/v32/ahn14.html [details]
Ahn, S., Shahbaba, B., & Welling, M. (2014). Distributed Stochastic Gradient MCMC. JMLR Workshop and Conference Proceedings, 32, 1044-1052. http://jmlr.org/proceedings/papers/v32/ahn14.html [details] Cohen, T., & Welling, M. (2014). Learning the Irreducible Representations of Commutative Lie Groups. JMLR Workshop and Conference Proceedings, 32, 1755-1763. http://jmlr.org/proceedings/papers/v32/cohen14.html [details]
Cohen, T., & Welling, M. (2014). Learning the Irreducible Representations of Commutative Lie Groups. JMLR Workshop and Conference Proceedings, 32, 1755-1763. http://jmlr.org/proceedings/papers/v32/cohen14.html [details] DuBois, C., Korattikara, A., Welling, M., & Smyth, P. (2014). Approximate Slice Sampling for Bayesian Posterior Inference. JMLR Workshop and Conference Proceedings, 33, 185-193. http://jmlr.org/proceedings/papers/v33/dubois14.html [details]
DuBois, C., Korattikara, A., Welling, M., & Smyth, P. (2014). Approximate Slice Sampling for Bayesian Posterior Inference. JMLR Workshop and Conference Proceedings, 33, 185-193. http://jmlr.org/proceedings/papers/v33/dubois14.html [details] Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Conference proceedings: papers accepted to the International Conference on Learning Representations (ICLR) 2014 ArXiv. http://arxiv.org/abs/1312.6114 [details]
Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. In Conference proceedings: papers accepted to the International Conference on Learning Representations (ICLR) 2014 ArXiv. http://arxiv.org/abs/1312.6114 [details] Kingma, D. P., & Welling, M. (2014). Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets. JMLR Workshop and Conference Proceedings, 32, 1782-1790. http://jmlr.org/proceedings/papers/v32/kingma14.html [details]
Kingma, D. P., & Welling, M. (2014). Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets. JMLR Workshop and Conference Proceedings, 32, 1782-1790. http://jmlr.org/proceedings/papers/v32/kingma14.html [details] Korattikara, A., Chen, Y., & Welling, M. (2014). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. JMLR Workshop and Conference Proceedings, 32, 181-189. http://jmlr.org/proceedings/papers/v32/korattikara14.html [details]
Korattikara, A., Chen, Y., & Welling, M. (2014). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. JMLR Workshop and Conference Proceedings, 32, 181-189. http://jmlr.org/proceedings/papers/v32/korattikara14.html [details] Salimans, T., Kingma, D. P., & Welling, M. (2014). Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. In Accepted papers: Advances in Variational Inference: NIPS 2014 Workshop: 13 December 2014, Convention and Exhibition Center, Montreal, Canada NIPS Foundation. https://drive.google.com/file/d/0BwY-r_90KHY4d3ZTNDJpY3FYRS1rVEVVb3lUQzMzdk01Q2VV/view?pli=1 [details]
Salimans, T., Kingma, D. P., & Welling, M. (2014). Markov Chain Monte Carlo and Variational Inference: Bridging the Gap. In Accepted papers: Advances in Variational Inference: NIPS 2014 Workshop: 13 December 2014, Convention and Exhibition Center, Montreal, Canada NIPS Foundation. https://drive.google.com/file/d/0BwY-r_90KHY4d3ZTNDJpY3FYRS1rVEVVb3lUQzMzdk01Q2VV/view?pli=1 [details] Ahn, S., Chen, Y., & Welling, M. (2013). Distributed and Adaptive Darting Monte Carlo through Regenerations. JMLR Workshop and Conference Proceedings, 31, 108-116. http://jmlr.org/proceedings/papers/v31/ahn13a.html [details]
Ahn, S., Chen, Y., & Welling, M. (2013). Distributed and Adaptive Darting Monte Carlo through Regenerations. JMLR Workshop and Conference Proceedings, 31, 108-116. http://jmlr.org/proceedings/papers/v31/ahn13a.html [details] Bornn, L., Chen, Y., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2013). Herded Gibbs Sampling. In International Conference on Learning Representation 2013 ArXiv. http://arxiv.org/abs/1301.4168 [details]
Bornn, L., Chen, Y., de Freitas, N., Eskelin, M., Fang, J., & Welling, M. (2013). Herded Gibbs Sampling. In International Conference on Learning Representation 2013 ArXiv. http://arxiv.org/abs/1301.4168 [details] Boyles, L., & Welling, M. (2013). The time-marginalized coalescent prior for hierarchical clustering. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), 26th Annual Conference on Neural Information Processing Systems 2012: December 3-6, 2012, Lake Tahoe, Nevada, USA (Vol. 4, pp. 2969-2977). (Advances in Neural Information Processing Systems; Vol. 25). Curran Associates. https://papers.nips.cc/paper/4786-the-time-marginalized-coalescent-prior-for-hierarchical-clustering [details]
Boyles, L., & Welling, M. (2013). The time-marginalized coalescent prior for hierarchical clustering. In P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), 26th Annual Conference on Neural Information Processing Systems 2012: December 3-6, 2012, Lake Tahoe, Nevada, USA (Vol. 4, pp. 2969-2977). (Advances in Neural Information Processing Systems; Vol. 25). Curran Associates. https://papers.nips.cc/paper/4786-the-time-marginalized-coalescent-prior-for-hierarchical-clustering [details] Chen, Y., & Welling, M. (2013). Evidence Estimation for Bayesian Partially Observed MRFs. JMLR Workshop and Conference Proceedings, 31, 178-186. http://jmlr.org/proceedings/papers/v31/chen13c.html [details]
Chen, Y., & Welling, M. (2013). Evidence Estimation for Bayesian Partially Observed MRFs. JMLR Workshop and Conference Proceedings, 31, 178-186. http://jmlr.org/proceedings/papers/v31/chen13c.html [details] Korattikara, A., Chen, Y., & Welling, M. (2013). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. In 2013 JSM proceedings: papers presented at the Joint Statistical Meetings, Montréal, Québec, Canada, August 3-8, 2013, and other ASA-sponsored conferences [cd-rom] (pp. 236-250). American Statistical Association. https://www.amstat.org/meetings/jsm/2013/proceedings.cfm [details]
Korattikara, A., Chen, Y., & Welling, M. (2013). Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget. In 2013 JSM proceedings: papers presented at the Joint Statistical Meetings, Montréal, Québec, Canada, August 3-8, 2013, and other ASA-sponsored conferences [cd-rom] (pp. 236-250). American Statistical Association. https://www.amstat.org/meetings/jsm/2013/proceedings.cfm [details] Welinder, P., Welling, M., & Perona, P. (2013). A Lazy Man's Approach to Benchmarking: Semisupervised Classifier Evaluation and Recalibration. In Proceedings: 2013 IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2013 : 23-28 June 2013, Portland, Oregon, USA (pp. 3262-3269). IEEE Computer Society, Conference Publishing Services. https://doi.org/10.1109/CVPR.2013.419 [details]
Welinder, P., Welling, M., & Perona, P. (2013). A Lazy Man's Approach to Benchmarking: Semisupervised Classifier Evaluation and Recalibration. In Proceedings: 2013 IEEE Conference on Computer Vision and Pattern Recognition: CVPR 2013 : 23-28 June 2013, Portland, Oregon, USA (pp. 3262-3269). IEEE Computer Society, Conference Publishing Services. https://doi.org/10.1109/CVPR.2013.419 [details] Ahn, S., Korattikara, A., & Welling, M. (2012). Bayesian posterior sampling via stochastic gradient Fisher scoring. In J. Langford, & J. Pineau (Eds.), Proceedings of Twenty-Ninth International Conference Machine Learning. - Vol. 2 (pp. 1591-1598). International Machine Learning Society. http://icml.cc/2012/papers/782.pdf [details]
Ahn, S., Korattikara, A., & Welling, M. (2012). Bayesian posterior sampling via stochastic gradient Fisher scoring. In J. Langford, & J. Pineau (Eds.), Proceedings of Twenty-Ninth International Conference Machine Learning. - Vol. 2 (pp. 1591-1598). International Machine Learning Society. http://icml.cc/2012/papers/782.pdf [details] Chen, Y., & Welling, M. (2012). Bayesian structure learning for Markov Random Fields with a spike and slab prior. In N. de Freitas, & K. Murphy (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012, Catalina Island, CA (pp. 174-184). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf [details]
Chen, Y., & Welling, M. (2012). Bayesian structure learning for Markov Random Fields with a spike and slab prior. In N. de Freitas, & K. Murphy (Eds.), Uncertainty in Artificial Intelligence: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012, Catalina Island, CA (pp. 174-184). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf [details] Gelfand, A. E., & Welling, M. (2012). Generalized belief propagation on tree robust structured region graphs. In K. Murphy, & N. de Freitas (Eds.), Uncertainty in Artificial: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012 Catalina Island, CA (pp. 296-305). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf [details]
Gelfand, A. E., & Welling, M. (2012). Generalized belief propagation on tree robust structured region graphs. In K. Murphy, & N. de Freitas (Eds.), Uncertainty in Artificial: proceedings of the Twenty-Eight conference (2012): August 15-17, 2012 Catalina Island, CA (pp. 296-305). AUAI Press. http://www.auai.org/uai2012/proceedings.pdf [details] Ilse, M., Forré, P., Welling, M., & Mooij, J. M. (2022). Combining Observational and Interventional Data through Causal ductions. (v2 ed.) ArXiv. https://doi.org/10.48550/arXiv.2103.04786 [details]
Ilse, M., Forré, P., Welling, M., & Mooij, J. M. (2022). Combining Observational and Interventional Data through Causal ductions. (v2 ed.) ArXiv. https://doi.org/10.48550/arXiv.2103.04786 [details] Garcia Satorras, V., Hoogeboom, E., & Welling, M. (2021). E(n) Equivariant Graph Neural Networks. Proceedings of Machine Learning Research, 139, 9323-9332. https://proceedings.mlr.press/v139/satorras21a.html [details]
Garcia Satorras, V., Hoogeboom, E., & Welling, M. (2021). E(n) Equivariant Graph Neural Networks. Proceedings of Machine Learning Research, 139, 9323-9332. https://proceedings.mlr.press/v139/satorras21a.html [details] Keller, T. A., Peters, J. W. T., Jaini, P., Hoogeboom, E., Forré, P., & Welling, M. (2021). Self Normalizing Flows. Proceedings of Machine Learning Research, 139, 5378-5387. https://arxiv.org/abs/2011.07248 [details]
Keller, T. A., Peters, J. W. T., Jaini, P., Hoogeboom, E., Forré, P., & Welling, M. (2021). Self Normalizing Flows. Proceedings of Machine Learning Research, 139, 5378-5387. https://arxiv.org/abs/2011.07248 [details] Weiler, M., Forré, P., Verlinde, E., & Welling, M. (2021). Coordinate Independent Convolutional Networks: Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2106.06020 [details]
Weiler, M., Forré, P., Verlinde, E., & Welling, M. (2021). Coordinate Independent Convolutional Networks: Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.2106.06020 [details] Meeds, E., Hendriks, R., al Faraby, S., Bruntink, M., & Welling, M. (2014). MLitB: Machine Learning in the Browser. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.1412.2432 [details]
Meeds, E., Hendriks, R., al Faraby, S., Bruntink, M., & Welling, M. (2014). MLitB: Machine Learning in the Browser. (v1 ed.) ArXiv. https://doi.org/10.48550/arXiv.1412.2432 [details] Federici, M., Ullrich, K., & Welling, M. (2017). Improved Bayesian Compression. Paper presented at Bayesian Deep Learning Workshop NIPS 2017, Long Beach, United States. http://bayesiandeeplearning.org/2017/papers/16.pdf [details]
Federici, M., Ullrich, K., & Welling, M. (2017). Improved Bayesian Compression. Paper presented at Bayesian Deep Learning Workshop NIPS 2017, Long Beach, United States. http://bayesiandeeplearning.org/2017/papers/16.pdf [details] Hasenclever, L., Tomczak, J. M., van den Berg, R., & Welling, M. (2017). Variational Inference with Orthogonal Normalizing Flows. Paper presented at Bayesian Deep Learning Workshop NIPS 2017, Long Beach, United States. http://bayesiandeeplearning.org/2017/papers/51.pdf [details]
Hasenclever, L., Tomczak, J. M., van den Berg, R., & Welling, M. (2017). Variational Inference with Orthogonal Normalizing Flows. Paper presented at Bayesian Deep Learning Workshop NIPS 2017, Long Beach, United States. http://bayesiandeeplearning.org/2017/papers/51.pdf [details] Tomczak, J. M., Ilse, M., & Welling, M. (2017). Deep Learning with Order-invariant Operator for Multi-instance Histopathology Classification. Abstract from Medical Imaging meets NIPS Workshop NIPS 2017, Long Beach, United States. https://doi.org/10.48550/arXiv.1712.00310 [details]
Tomczak, J. M., Ilse, M., & Welling, M. (2017). Deep Learning with Order-invariant Operator for Multi-instance Histopathology Classification. Abstract from Medical Imaging meets NIPS Workshop NIPS 2017, Long Beach, United States. https://doi.org/10.48550/arXiv.1712.00310 [details] Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://doi.org/10.48550/arXiv.1611.07308 [details]
Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://doi.org/10.48550/arXiv.1611.07308 [details] Tomczak, J. M., & Welling, M. (2016). Improving Variational Auto-Encoders using Householder Flow. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://arxiv.org/abs/1611.09630 [details]
Tomczak, J. M., & Welling, M. (2016). Improving Variational Auto-Encoders using Householder Flow. Paper presented at Bayesian Deep Learning Workshop NIPS 2016, Barcelona, Spain. https://arxiv.org/abs/1611.09630 [details] Federici, M. (2025). Information theory for representation learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Federici, M. (2025). Information theory for representation learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Ruhe, D. J. J. (2025). Structured deep learning with applications in astrophysics. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Ruhe, D. J. J. (2025). Structured deep learning with applications in astrophysics. [Thesis, fully internal, Universiteit van Amsterdam]. [details] de Haan, P. (2025). Machine learning with generalised symmetries. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
de Haan, P. (2025). Machine learning with generalised symmetries. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Bakker, T. B. (2024). Learning adaptive sensing and active learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bakker, T. B. (2024). Learning adaptive sensing and active learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Esmaeili, B. (2024). Learning useful representations with variational autoencoders. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Esmaeili, B. (2024). Learning useful representations with variational autoencoders. [Thesis, fully internal, Universiteit van Amsterdam]. [details] García Satorras, V. (2024). Inductive biases for graph neural networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
García Satorras, V. (2024). Inductive biases for graph neural networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Löwe, S. (2024). Learning structured representations of objects and relations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Löwe, S. (2024). Learning structured representations of objects and relations. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Miller, B. K. (2024). Machine learning for scientific simulation: Inference and generative models. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Miller, B. K. (2024). Machine learning for scientific simulation: Inference and generative models. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Veeling, B. S. (2024). Deep learning for medical data. [Thesis, fully internal, Universiteitsbibliotheek]. [details]
Veeling, B. S. (2024). Deep learning for medical data. [Thesis, fully internal, Universiteitsbibliotheek]. [details] Weiler, M. (2024). Equivariant and coordinate independent convolutional networks: A gauge field theory of neural networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Weiler, M. (2024). Equivariant and coordinate independent convolutional networks: A gauge field theory of neural networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Wöhlke, J. G. (2024). Reinforcement learning and planning for autonomous agent navigation: With a focus on sparse reward settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wöhlke, J. G. (2024). Reinforcement learning and planning for autonomous agent navigation: With a focus on sparse reward settings. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Hoogeboom, E. (2023). Normalizing flows and diffusion models for discrete and geometric data. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hoogeboom, E. (2023). Normalizing flows and diffusion models for discrete and geometric data. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Keller, T. A. (2023). Natural inductive biases for artificial intelligence. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Keller, T. A. (2023). Natural inductive biases for artificial intelligence. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Oh, C. (2023). Bayesian optimization on non-conventional search spaces. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Oh, C. (2023). Bayesian optimization on non-conventional search spaces. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Putzky, P. (2023). Amortized inference in inverse problems. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Putzky, P. (2023). Amortized inference in inverse problems. [Thesis, fully internal, Universiteit van Amsterdam]. [details] van der Pol, E. (2023). Symmetry and structure in deep reinforcement learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
van der Pol, E. (2023). Symmetry and structure in deep reinforcement learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Bongers, S. R. (2022). Causal modeling & dynamical systems: A new perspective on feedback. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Bongers, S. R. (2022). Causal modeling & dynamical systems: A new perspective on feedback. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Hu, S. (2022). Uncertainty, robustness and safety in artificial intelligence, with applications in healthcare. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Hu, S. (2022). Uncertainty, robustness and safety in artificial intelligence, with applications in healthcare. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Ilse, M. (2022). Invariance in deep representations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Ilse, M. (2022). Invariance in deep representations. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Kool, W. (2022). Learning and optimization in combinatorial spaces: With a focus on deep learning for vehicle routing. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kool, W. (2022). Learning and optimization in combinatorial spaces: With a focus on deep learning for vehicle routing. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Louizos, C. (2022). Probabilistic reasoning for uncertainty & compression in deep learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Louizos, C. (2022). Probabilistic reasoning for uncertainty & compression in deep learning. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Wang, Q. (2022). Functional representation learning for uncertainty quantification and fast skill transfer. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Wang, Q. (2022). Functional representation learning for uncertainty quantification and fast skill transfer. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Blom, T. (2021). Causality and independence in systems of equations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Blom, T. (2021). Causality and independence in systems of equations. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Cohen, T. S. (2021). Equivariant convolutional networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Cohen, T. S. (2021). Equivariant convolutional networks. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Shang, W. (2021). Crafting deep learning models for reinforcement learning and computer vision applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Shang, W. (2021). Crafting deep learning models for reinforcement learning and computer vision applications. [Thesis, fully internal, Universiteit van Amsterdam]. [details] Kipf, T. N. (2020). Deep learning with graph-structured representations. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Kipf, T. N. (2020). Deep learning with graph-structured representations. [Thesis, fully internal, Universiteit van Amsterdam]. [details] O'Connor, P. (2020). Biologically plausible deep learning: Should airplanes flap their wings? [Thesis, fully internal, Universiteit van Amsterdam]. [details]
O'Connor, P. (2020). Biologically plausible deep learning: Should airplanes flap their wings? [Thesis, fully internal, Universiteit van Amsterdam]. [details] Ullrich, K. (2020). A coding perspective on deep latent variable models. [Thesis, fully internal, Universiteit van Amsterdam]. [details]
Ullrich, K. (2020). A coding perspective on deep latent variable models. [Thesis, fully internal, Universiteit van Amsterdam]. [details] O'Connor, P., & Welling, M. (2016). Deep Spiking Networks. ArXiv. https://arxiv.org/abs/1602.08323v2 [details]
O'Connor, P., & Welling, M. (2016). Deep Spiking Networks. ArXiv. https://arxiv.org/abs/1602.08323v2 [details]