For best experience please turn on javascript and use a modern browser!
You are using a browser that is no longer supported by Microsoft. Please upgrade your browser. The site may not present itself correctly if you continue browsing.
Zimmermann, H., Lindsten, F., van de Meent, J-W., & Naesseth, C. A. (2023). A Variational Perspective on Generative Flow Networks. Transactions on Machine Learning Research, [612]. https://openreview.net/forum?id=AZ4GobeSLq
Esmaeili, B., Wu, H., Zimmermann, H., & Van De Meent, J-W. (2022). Nested Variational Inference. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. Wortman Vaughan (Eds.), 35th Conference on Neural Information Processing Systems (NeurIPS 2021) : online, 6-14 December 2021 (Vol. 25, pp. 20423-20435). (Advances in Neural Information Processing Systems; Vol. 34). Neural Information Processing Systems Foundation. https://proceedings.neurips.cc/paper/2021/file/ab49b208848abe14418090d95df0d590-Paper.pdf[details]
Smedemark-Margulies, N., Walters, R., Zimmermann, H., Laird, L., van der Loo, C., Kaushik, N., Caceres, R., & van de Meent, J. W. (2022). Probabilistic program inference in network-based epidemiological simulations. PLoS Computational Biology, 18(11), [e1010591]. https://doi.org/10.1371/journal.pcbi.1010591
The UvA uses cookies to ensure the basic functionality of the site and for statistical and optimisation purposes. Cookies are also placed to display third-party content and for marketing purposes. Click 'Accept all cookies' to consent to the placement of all cookies, or choose 'Decline' to only accept functional and analytical cookies. Also read the UvA Privacy statement.