
Understanding quantum computation using
pictures

John van de Wetering
University of Amsterdam

September 25th 2024 – IvI All-Hands Meeting

Quantum Computing 101

§ Stuff at small scale is not like stuff at big scale.

§ Spooky action at a distance, too strong nonlocal correlations,
can’t copy information, can’t know the full state...

§ This freaked people out.

§ Then Feynmann said “not a bug, but a feature”.

§ And thus the field of quantum computing was born («1980).

Quantum Computing 101

§ Stuff at small scale is not like stuff at big scale.

§ Spooky action at a distance, too strong nonlocal correlations,
can’t copy information, can’t know the full state...

§ This freaked people out.

§ Then Feynmann said “not a bug, but a feature”.

§ And thus the field of quantum computing was born («1980).

Quantum Computing 101

§ Stuff at small scale is not like stuff at big scale.

§ Spooky action at a distance, too strong nonlocal correlations,
can’t copy information, can’t know the full state...

§ This freaked people out.

§ Then Feynmann said “not a bug, but a feature”.

§ And thus the field of quantum computing was born («1980).

Quantum Computing 101

Classical bit: b P t0, 1u.
Sequence of classical bits: b⃗ P t0, 1un. b⃗ “ 00110101 . . .
Storing n classical bits requires n classical bits of storage.

Quantum bit: v P C2, ∥v∥ “ 1. (usually write |ψy)
Sequence of quantum bits: v P pC2qbn “ C2n .
Storing n quantum bits requires « 2n classical bits of storage.

So: seems reasonable we should be able to do faster calculations (or
at least store more data) using quantum systems as opposed to
classical systems.

But it is harder than you might think.

Quantum Computing 101

Classical bit: b P t0, 1u.
Sequence of classical bits: b⃗ P t0, 1un. b⃗ “ 00110101 . . .
Storing n classical bits requires n classical bits of storage.

Quantum bit: v P C2, ∥v∥ “ 1. (usually write |ψy)
Sequence of quantum bits: v P pC2qbn “ C2n .
Storing n quantum bits requires « 2n classical bits of storage.

So: seems reasonable we should be able to do faster calculations (or
at least store more data) using quantum systems as opposed to
classical systems.

But it is harder than you might think.

Quantum Computing 101

Classical bit: b P t0, 1u.
Sequence of classical bits: b⃗ P t0, 1un. b⃗ “ 00110101 . . .
Storing n classical bits requires n classical bits of storage.

Quantum bit: v P C2, ∥v∥ “ 1. (usually write |ψy)
Sequence of quantum bits: v P pC2qbn “ C2n .
Storing n quantum bits requires « 2n classical bits of storage.

So: seems reasonable we should be able to do faster calculations (or
at least store more data) using quantum systems as opposed to
classical systems.

But it is harder than you might think.

Quantum Computing 101

Classical bit: b P t0, 1u.
Sequence of classical bits: b⃗ P t0, 1un. b⃗ “ 00110101 . . .
Storing n classical bits requires n classical bits of storage.

Quantum bit: v P C2, ∥v∥ “ 1. (usually write |ψy)
Sequence of quantum bits: v P pC2qbn “ C2n .
Storing n quantum bits requires « 2n classical bits of storage.

So: seems reasonable we should be able to do faster calculations (or
at least store more data) using quantum systems as opposed to
classical systems.

But it is harder than you might think.

The obvious thing to try

Suppose we have a classical function f : t0, 1un Ñ t0, 1um.
Classically: evaluate it one input at a time.

Quantumly: implement a uniform superposition over all inputs
(this is actually not that hard):

|ϕy “
1

2n{2

ÿ

xPt0,1un

|xy

Applying f to this state we get all the outcomes at the same time:

f p|ϕyq “
1

2n{2

ÿ

xPt0,1un

|f pxqy

Amazing! But then why haven’t we solved world hunger yet?

The obvious thing to try

Suppose we have a classical function f : t0, 1un Ñ t0, 1um.
Classically: evaluate it one input at a time.

Quantumly: implement a uniform superposition over all inputs
(this is actually not that hard):

|ϕy “
1

2n{2

ÿ

xPt0,1un

|xy

Applying f to this state we get all the outcomes at the same time:

f p|ϕyq “
1

2n{2

ÿ

xPt0,1un

|f pxqy

Amazing! But then why haven’t we solved world hunger yet?

The obvious thing to try

Suppose we have a classical function f : t0, 1un Ñ t0, 1um.
Classically: evaluate it one input at a time.

Quantumly: implement a uniform superposition over all inputs
(this is actually not that hard):

|ϕy “
1

2n{2

ÿ

xPt0,1un

|xy

Applying f to this state we get all the outcomes at the same time:

f p|ϕyq “
1

2n{2

ÿ

xPt0,1un

|f pxqy

Amazing! But then why haven’t we solved world hunger yet?

The obvious thing to try

Suppose we have a classical function f : t0, 1un Ñ t0, 1um.
Classically: evaluate it one input at a time.

Quantumly: implement a uniform superposition over all inputs
(this is actually not that hard):

|ϕy “
1

2n{2

ÿ

xPt0,1un

|xy

Applying f to this state we get all the outcomes at the same time:

f p|ϕyq “
1

2n{2

ÿ

xPt0,1un

|f pxqy

Amazing! But then why haven’t we solved world hunger yet?

The big problem of quantum computing

While physics is quantum,
our minds are classical

To get the quantum information into our brains
we need to measure it.

Measuring destroys superpositions.

Our amazing trick fails :’(

(unless we use other really smart tricks)

The big problem of quantum computing

While physics is quantum,
our minds are classical

To get the quantum information into our brains
we need to measure it.

Measuring destroys superpositions.

Our amazing trick fails :’(

(unless we use other really smart tricks)

The big problem of quantum computing

While physics is quantum,
our minds are classical

To get the quantum information into our brains
we need to measure it.

Measuring destroys superpositions.

Our amazing trick fails :’(

(unless we use other really smart tricks)

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as rotations

§ Quantum computation is done by quantum circuits.

§ A quantum circuit consists of quantum gates.

§ Single qubit gates: NOT, S, T, H.

NOT S = H
?
NOTHH(adamard) T =

?
S

§ Two qubit gate: CNOT (controlled NOT): |x , yy ÞÑ |x , x ‘ yy.

§ This is an approximately universal gate set.

Quantum gates as matrices

Note: quantum gates are just matrices...

S “

ˆ

1 0
0 i

˙

H “
1

?
2

ˆ

1 1
1 ´1

˙

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

... but nobody wants to deal with these things directly.

Quantum gates as matrices

Note: quantum gates are just matrices...

S “

ˆ

1 0
0 i

˙

H “
1

?
2

ˆ

1 1
1 ´1

˙

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

... but nobody wants to deal with these things directly.

Quantum gates as matrices

Note: quantum gates are just matrices...

S “

ˆ

1 0
0 i

˙

H “
1

?
2

ˆ

1 1
1 ´1

˙

CNOT “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

... but nobody wants to deal with these things directly.

Quantum gates as gates

X “ NOT “ + “

ˆ

0 1
1 0

˙

CNOT “
+

“

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

Hadamard “ H “
1

?
2

ˆ

1 1
1 ´1

˙

RZ pαq “ RZ pαq “

ˆ

1 0
0 e iα

˙

Z :“ RZ pπq S :“ RZ p
π

2
q T :“ RZ p

π

4
q

Quantum circuits

An example quantum circuit:

S

X

T

`

`

T:

X

H H

Circuit identities

+ +
=

H H =

T T = S

T: T =

Gate commutation

=

++ + +

T
=

+

T

+

T
=

+ +T T+ +T

More circuit equalities

And more circuit equalities

And even more circuit equalities

Quantum circuits bad!

Why is this so terrible?

§ Choice of gates is a bit arbitrary

§ The notation is not “quantum native”

§ Wires are rigid going from left-to-right

The ZX-calculus essentially gets rid of these problems

Quantum circuits bad!

Why is this so terrible?

§ Choice of gates is a bit arbitrary

§ The notation is not “quantum native”

§ Wires are rigid going from left-to-right

The ZX-calculus essentially gets rid of these problems

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation

Used in:

§ Quantum circuit compilation and simulation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation

Used in:

§ Quantum circuit compilation and simulation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

The ZX-calculus

The ZX-calculus is a graphical language for quantum computation

Used in:

§ Quantum circuit compilation and simulation

§ Measurement-based quantum computation

§ Surface codes and lattice surgery

§ ...

It is also a convenient tool for day-to-day quantum reasoning

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨ +yx+ ¨ ¨ ¨ +|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

where |˘y :“ |0y ˘ |1y

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨ +yx+ ¨ ¨ ¨ +|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

where |˘y :“ |0y ˘ |1y

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

Spiders

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider X-spider

|0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| |+ ¨ ¨ ¨ +yx+ ¨ ¨ ¨ +|

`e iα |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1| ` e iα |- ¨ ¨ ¨ -yx- ¨ ¨ ¨ -|

α

..
.

..
. α

..
.

..
.

where |˘y :“ |0y ˘ |1y

For example:

α “ |0yx0|`e iα |1yx1| “

ˆ

1 0
0 0

˙

`

ˆ

0 0
0 e iα

˙

“

ˆ

1 0
0 e iα

˙

Spiders cont.

If α “ 0 we drop the label:

..
.

..
. “ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| ` |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

..
.

..
. “ |` ¨ ¨ ¨ `yx` ¨ ¨ ¨ `| ` |´ ¨ ¨ ¨ ´yx´ ¨ ¨ ¨ ´|

Example:

“ |0y ` |1y “
?
2 |`y “ |`y ` |´y “

?
2 |0y

π “ |0y ´ |1y “
?
2 |´y π “ |`y ´ |´y “

?
2 |1y

We will ignore these
?
2 scalar factors

Spiders cont.

If α “ 0 we drop the label:

..
.

..
. “ |0 ¨ ¨ ¨ 0yx0 ¨ ¨ ¨ 0| ` |1 ¨ ¨ ¨ 1yx1 ¨ ¨ ¨ 1|

..
.

..
. “ |` ¨ ¨ ¨ `yx` ¨ ¨ ¨ `| ` |´ ¨ ¨ ¨ ´yx´ ¨ ¨ ¨ ´|

Example:

“ |0y ` |1y “
?
2 |`y “ |`y ` |´y “

?
2 |0y

π “ |0y ´ |1y “
?
2 |´y π “ |`y ´ |´y “

?
2 |1y

We will ignore these
?
2 scalar factors

Formal composition

Spiders can be composed in two ways.

Vertical composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Formal composition

Spiders can be composed in two ways.
Vertical composition gives tensor product:

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

“

¨

˚

˚

˝

1 0
0 0
0 0
0 1

˛

‹

‹

‚

b

ˆ

1 0
0 1

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Formal composition

Other tensor product:

“

ˆ

1 0
0 1

˙

b
1

?
2

ˆ

1 0 0 1
0 1 1 0

˙

“
1

?
2

¨

˚

˚

˝

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

˛

‹

‹

‚

Formal composition

Horizontal composition is regular composition of linear maps:

“

1
?
2

¨

˚

˚

˝

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

˛

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1

?
2

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

˛

‹

‹

‚

Building ZX-diagrams

Any ZX-diagram is built by simply iterating
these vertical and horizontal compositions

Symmetries

Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

Symmetries

Note:

=

Hence, we may write

In general: only connectivity matters

=

π

π
2

π
4

-π2π

π

π
2

π
4

-π2

π
=

π

π
2

π
4

-π2

π

ZX-diagrams summary

§ Two types of generators: Z-spiders and X-spiders

§ Can compose both horizontally and vertically

§ Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.

ZX-diagrams summary

§ Two types of generators: Z-spiders and X-spiders

§ Can compose both horizontally and vertically

§ Wires can connect every which way

How powerful are ZX-diagrams as a representation?

Theorem
ZX-diagrams are universal: any linear map between qubits can be
represented as a ZX-diagram.

So far it’s just notation. What can we do with it?

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

α

..
.“ α

..
.

“

“

“

@α, β P r0, 2πs

Spider fusion

β

..
.

..
.

α
..
.

..
.

“..
.

..
.

..
.α`β

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

Connected spiders of same colour fuse

π
4 =

π
4

π
4=

=
π

=
π π

βα = α ` β

Spider fusion

β

..
.

..
.

α
..
.

..
.

“..
.

..
.

..
.α`β

β

..
.

..
.

α

..
.

..
.

“..
.

..
.

..
.α`β

Connected spiders of same colour fuse

π
4 =

π
4

π
4=

=
π

=
π π

βα = α ` β

State and pi-copy

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

π’s and phase-free states copy through the other colour

Combining rules:

α “

..
.π α

..
.π “ ´α

..
.

π

π

π

“

..
.

π

π

π

“

..
.

π

π

π

State and pi-copy

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

π’s and phase-free states copy through the other colour

Combining rules:

α “

..
.π α

..
.π “ ´α

..
.

π

π

π

“

..
.

π

π

π

“

..
.

π

π

π

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Hadamards and colour-changing

Definition of Hadamard in ZX:

:= π
2

π
2

π
2

Rules:

“ ..
. “ ..
.

..
.α α ..
.

Derived rule: commuting Hadamards changes colour

“ ..
. α ..
.

..
.

..
.α ..
.

..
.α“

Consequence: Everything in ZX holds with colours reversed

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 1: GHZ-preparation circuit

GHZ-state is |000y ` |111y.
The following circuit creates a GHZ-state:

|0y

|0y

|0y

+

+

H

Proof:

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

bπ

bπ aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

2bπ

aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

aπ

aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

2aπ

Alice

Bob

Example 2: Teleportation

Let |Ψy represent a side of a Bell state.
Then this is the standard quantum teleportation protocol:

|Ψy

+

|Ψy H

Z X

Alice

Bob

Proof:

Alice

Bob

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..
.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..
.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Bialgebra

Z-spiders act like COPY; X-spiders act like XOR:

“
..
.aπ

..
.

aπ

aπ

aπ

“
aπ

bπ

pa ‘ bqπ

Classically we have:

“COPYXOR

COPY

COPY XOR

XOR

Hence:

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Example 3: Three CNOTs make SWAP

=

Rules for ZX-diagrams: The ZX-calculus

β

..
.

..
.

α
..
.

..
.

“..
.

..
.

..
.α`β

´α“
π

π

π α

..
.

..
.

π

..
.α “

..
.

α

..
.“ α

..
.

“

“

“

α, β P r0, 2πs

§ All derivations hold in any orientation

§ All derivations hold with colours interchanged

§ All derivations hold with phases negated

Example 4: Detecting entanglement

Consider the following circuit:

SH

|0y

|0y

|0y

|0y `

`

`

`

`

H `

`

`

`

S `

Q: Which qubits are entangled in the end?

Step 1: Write it as a ZX-diagram

π
2

π
2

Step 2: Open up PyZX

Example 4: Detecting entanglement

Consider the following circuit:

SH

|0y

|0y

|0y

|0y `

`

`

`

`

H `

`

`

`

S `

Q: Which qubits are entangled in the end?
Step 1: Write it as a ZX-diagram

π
2

π
2

Step 2: Open up PyZX

Example 4: Detecting entanglement

Consider the following circuit:

SH

|0y

|0y

|0y

|0y `

`

`

`

`

H `

`

`

`

S `

Q: Which qubits are entangled in the end?
Step 1: Write it as a ZX-diagram

π
2

π
2

Step 2: Open up PyZX

Completeness

How much can we prove using the rules?

Theorem
The rules shown so far suffice to show any true equality between
Clifford diagrams (where phases are π

2).

Theorem
These rules + one more suffice to show any true equality.

Completeness

How much can we prove using the rules?

Theorem
The rules shown so far suffice to show any true equality between
Clifford diagrams (where phases are π

2).

Theorem
These rules + one more suffice to show any true equality.

New book on quantum compilation

§ Over 500 pages and 100
exercises

§ Synthesis of quantum circuits

§ Optimisation, verification,
simulation

§ A new approach to
understanding quantum error
correction

§ And all this using ZX-diagrams!

§ And available for free for
everyone!

https://github.com/zxcalc/book

https://github.com/zxcalc/book

Classical simulation using ZX

Veni proposal: Combine tensor network techniques with stabiliser
decomposition approach.

§ Write computation as ZX-diagram.

§ Optimise ZX-diagram.

§ Replace ‘expensive’ resource states by sum of ‘cheap’ states.

§ Further optimise each term in the sum.

§ Repeat until a number falls out.

Apply this to:

§ Simulate quantum computations

§ Calculate properties of condensed matter systems

§ SAT/model counting problems

Classical simulation using ZX

Veni proposal: Combine tensor network techniques with stabiliser
decomposition approach.

§ Write computation as ZX-diagram.

§ Optimise ZX-diagram.

§ Replace ‘expensive’ resource states by sum of ‘cheap’ states.

§ Further optimise each term in the sum.

§ Repeat until a number falls out.

Apply this to:

§ Simulate quantum computations

§ Calculate properties of condensed matter systems

§ SAT/model counting problems

Thank you for your attention!

Kissinger & vdW 2021, arXiv:2109.01076
Simulating quantum circuits with ZX-calculus reduced stabiliser
decompositions

https://github.com/zxcalc/book

https://github.com/zxcalc/book

